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[1] Dry conditions from amoderate El Niño during the fall of
2006 resulted in enhanced burning in Indonesia with fire
emissions of CO approximately 4–6 times larger than the
prior year. Here we use new tropospheric methane and CO
data from the Aura Tropospheric Emission Spectrometer and
new CO profile measurements from the Terra Measurements
of Pollution in the Troposphere (MOPITT) satellite
instruments with the Goddard Earth Observing System
(GEOS)-Chem model to estimate methane emissions of 4.25
± 0.75 Tg for October–November 2006 from these fires.
Errors in convective parameterization in GEOS-Chem,
evaluated by comparing MOPITT and GEOS-Chem CO
profiles, are the primary uncertainty of the emissions
estimate. The El Niño related Indonesian fires increased the
tropical distribution of atmospheric methane relative to 2005,
indicating that tropical biomass burning can compensate for
expected decreases in tropical wetland methane emissions
from reduced rainfall during El Niño as found in
previous studies. Citation: Worden, J., et al. (2013), El Niño,
the 2006 Indonesian peat fires, and the distribution of atmospheric
methane, Geophys. Res. Lett., 40, doi:10.1002/grl.50937.

1. Introduction

[2] Recent studies suggest that wet tropical conditions from
La Niña result in increased wetland emissions, whereas dry
tropical conditions from El Niño result in decreased wetland
emissions [Hodson et al., 2011], and that this El Niño/
La Niña (or ENSO) driven variability could partly explain
the recent methane increase since 2006 [e.g., Dlugokencky
et al., 2009]. Variations in tropical fire emissions potentially
counterbalance the change in emissions from tropical wetlands,
as dry conditions resulting in decreased wetland emissions can
be favorable toward increasing fire emissions [Bousquet et al.,
2006; Dlugokencky et al., 2009; Andreae and Merlet, 2001].

Model-based methane estimates from fires can have large
uncertainties because of the spatial and temporal variability of
fire emissions, primarily derived from satellite-derived burnt
area measurements, as well as the dependency of the fire
CH4/CO2 emission factors (g/kg drymatter burned) on fuel type
and combustion phase [e.g., Van Der Werf et al., 2010].
Furthermore, the resulting estimates of atmospheric methane
from fires are not well corroborated by the surface network, pri-
marily located in “background” locations where smoke plumes
are typically diluted prior to measurement [Dlugokencky et al.,
2009]. Reflected sunlight-based satellite measurements of
atmospheric methane have not been used to quantify methane
from fires because of scattering from aerosols in smoke
plumes or sparse sampling of plumes [Frankenberg et al.,
2011; Ross et al., 2013].
[3] During the fall of 2006, human-set fires and dry condi-

tions from a moderate El Niño resulted in significant biomass
burning emissions over Indonesia [e.g., Field et al., 2009] with
CO emissions from the burning approximately 4–6 times larger
than the previous year as discussed in Logan et al. [2008].
Here we use tropospheric CH4 and CO measurements from
the Aura Tropospheric Emission Spectrometer (TES) satellite
instrument [Worden et al., 2012] along with new CO profiles,
with near-surface sensitivity, from the Measurements of
Pollution in the Troposphere (MOPITT) instrument and the
Goddard Earth Observing System (GEOS)-Chem global
chemistry and transport model to quantify CH4 emissions
from these fires and how the fires affected tropical tropo-
spheric methane concentrations.

2. CH4 and CO Distributions During the Fall
of 2006

[4] Figure 1 shows the near-global distribution of methane
and carbon monoxide in October 2006, observed by TES
and simulated by the GEOS-Chem global chemistry and
transport model (e.g., supporting information) [Pickett-
Heaps et al., 2011]. Details on the quality flags, bias correc-
tions, sensitivities, and uncertainties of the TES satellite data
and comparisons to the GEOS-Chem model are discussed in
the supporting information and in Worden et al. [2013]. In
summary the CH4 and CO data have approximately 1% or
better precision and 0.5% or better accuracy after a constant
bias correction is made to the data. These infrared-based
estimates of methane have little sensitivity to aerosols from
fires because aerosol optical depth from fires inversely
depends on wavelength. GEOS-Chemmodel (2° × 2.5° spatial
and 4 h time resolution) profiles corresponding to the best time
and space match with each TES profile are used for the
comparison. The TES-averaging kernels and a priori
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GEOS-Chem model constraint are applied to corresponding
GEOS-Chemmodel profiles to account for the TES retrieval
regularization and vertical resolution. Although the TES IR
data is primarily sensitive to methane in the free troposphere,
the volume-mixing ratios of both model and adjusted TES
profiles are then averaged over the whole troposphere to miti-
gate retrieval errors in the data and transport errors in the
model. Figure 1 shows that the Indonesian fires make a clear
impact on regional CO distributions, with observed enhance-
ments up to 300+ ppb (see also Figure 2b). Because methane
is long lived, the effect of the Indonesian fires on atmospheric
methane is not readily apparent relative to the global distribu-
tion but can be observed by differencing the TES October
2006 and October 2005 CH4 estimates (Figure 1, top right).
[5] Figure 2 (partly adapted from Worden et al. [2013])

shows model and data distributions of methane and CO for
September, October, and November of 2006. A weighted
least squares linear fit for the data distributions is calculated
based upon TES observations errors. An empirical estimate
of the “error” in the GEOS-Chem slope is calculated by the
scatter in the GEOS-Chem distribution as discussed in
Worden et al. [2013]. Based on in situ data [e.g., Van der
Werf et al., 2010], we expect that an emission ratio near
0.11 (ppb/ppb) is representative of tropical fires, whereas
larger values for the emission ratios indicate larger contribu-
tion from other sources (e.g., wetlands) relative to the emitted
CO. Worden et al. [2013] (and supporting information)
shows that this distribution is primarily explained by the
Indonesian fire emissions. A larger slope during November
indicates that the CH4 emissions from the fires, relative to
other sources, are lower. The larger scatter and lower correla-
tion of the observed CH4/CO data in September suggests that
non-biomass burning sources contribute to the observed free
tropospheric methane.

3. Estimate of Methane Emissions From
Indonesian Peat Fires

[6] Previous efforts to reconcile satellite and model atmo-
spheric composition estimates have been stymied by large
uncertainties in the a priori model emissions and emission
ratios, errors in modeled vertical transport, and the vertical

sensitivity and uncertainties of the satellite data [e.g., Kopacz
et al., 2010; Liu et al., 2010; Jiang et al., 2013]. For methane,
disentangling the role of fire emissions from nearby wetland or
anthropogenic emissions on observed atmospheric concentra-
tions can also be challenging [e.g., Bousquet et al., 2006;
Worden et al., 2013]. For these reasons, we use new methane
data from TES (as well as CO to identify air parcels affected
by the fires) along with new profile CO estimates from
MOPITT to provide separate methane emission estimates
from the fires and evaluation of these errors. optimal estima-
tion (OE) is used to quantify emissions using these satellite
data and the GEOS-Chem model. In the OE inverse frame-
work, data and model are compared in a cost function that
depends on errors in the data and prior knowledge of the
emissions. Iterations of model emissions are performed
until this cost function reaches a minimum.
[7] We first estimate total methane emissions from

Indonesia for September, October, and November of 2006
using the TES data and the OE approach described in Jones
et al. [2003] and supporting information. This approach quan-
tifies emissions from large-scale land masses. Satellite data
uncertainties and emissions from other sources are the domi-
nant error terms calculated using this approach. These errors
are random and therefore describe the precision of the esti-
mate. We find total Indonesian fire emissions for the October
through November 2006 time period are approximately
4.5 Tg ± 4% (Table 1 “Updated Biomass Burning” row),
surprisingly consistent with the model estimate that is based
on a burnt area estimate, the estimate of carbon from burnt
area, and CH4/CO2 emissions ratios. However, the TES-based
estimate depends on knowledge of the non-biomass burning
Indonesian emissions (Table 1) and the errors on these emis-
sions are not well known. The good agreement between model
and data in the CH4/CO distributions (Figure 2) indicates that
we can evaluate the impact of this error by quantifying CO
emissions. Errors in modeled vertical transport also directly
propagate to the emissions estimate [e.g., Jones et al., 2003;
Kopacz et al., 2010; Jiang et al., 2013]. To evaluate these
two error sources, we provide a separate, corroborating estimate
of the Indonesian biomass burning emissions and its errors
using MOPITT multispectral CO profiles that can distinguish
near-surface CO from free tropospheric CO (for land scenes

Figure 1. (top row) Methane estimates from the GEOS-Chem model, the TES data (for October 2006), and the difference
between TES methane estimates in October 2006 minus October 2005. (bottom row) TES CO estimates corresponding to
Figure 1 (top row). The map resolution is 2° latitude and 2.5° longitude.
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with less than 5% cloud contamination) and hence provide
increased sensitivity to the fire emissions of CO and its subse-
quent vertical transport.
[8] We use a 4-D variational approach (supporting informa-

tion) [Kopacz et al., 2010; Jiang et al., 2011, 2013] to quantify
global CO emissions during the fall of 2006 using the
MOPITT V5J profiles (supporting information) [Deeter

et al., 2013]. This approach allows for emissions estimates
with substantially increased spatial resolution to take advan-
tage of the near-surface sensitivity of the CO profiles for esti-
mating the spatial variability of the fire emissions. However,
precision errors are not calculated due to computational cost.
Errors in modeled vertical transport affect the modeled vertical
distribution of CO and hence CH4. Emissions estimates based

Figure 2. Observed (TES) and corresponding modeled GEOS-Chem distributions of CH4 and CO over Indonesia (5°S to
15°N, 80°E to 130°E). The line is a fit through the TES data.
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on the MOPITT CO profiles are therefore directly affected by
errors in vertical transport. In principal, use of the MOPITT
total column data to quantify emissions is less sensitive to
vertical transport errors because the mass of the total column
must be preserved in the model regardless of where convection
places the corresponding air parcels. On the other hand, the
MOPITT column-based estimates will preferentially weigh
the CO values in the boundary layer over land, while over
ocean, only the thermal channel contributes, with highest
sensitivity in the midtroposphere [Worden et al., 2010]. We
can empirically evaluate how the combination of vertical
sensitivity in the satellite data and vertical transport error in
the model affects the emissions estimates by comparing the
results of the inversion using the MOPITT profile against an
inversion using the total column. Figure 3 (left) shows the
vertical structure of the mean relative bias across the tropics
and subtropics, averaged from 20°S to 20°N, between the
modeled and a priori CO fields (supporting information).

The a priori shows a large positive bias in the middle tropo-
sphere corresponding to the equatorial Eastern Pacific
Ocean, the Atlantic Ocean, and the Indian Ocean. These hori-
zontal biases are due to continental outflow as discussed in Liu
et al. [2010] and are significantly reduced in the a posteriori
simulations with both the profile and column inversions.
However, residual vertical gradients exist over all regions that
are consistent with vertical transport biases in the model
[Liu et al., 2010; Jiang et al., 2013] and which cannot be
corrected in the inversion of the emissions.
[9] As shown in Figure 3, emissions estimates from the

profile-based inversion have the smallest residuals between
the MOPITT profile data and GEOS-Chem model for
September and October. Both approaches yield acceptable
results for November with the profile-based estimate biased
high over Indonesia and the column-based estimate biased
low. Using both results for November and the profile-based
results for September and October (Table 2), along with the
a priori emission ratio of 0.061 g/g (0.106 ppb/ppb) for
CH4/CO suggests a range of CH4 emissions of 4.1 to 5 Tg
(Table 1, “Updated CH4 from CO” row).
[10] The uncertainty in the CH4/CO emission ratio also

affects this estimate. From Andreae and Merlet [2001] we
expect an approximate 35% error in the CH4/CO emission
ratio for a single fire and consequently a smaller error when
the fires are aggregated over region and a month. Although
the observed and modeled CH4/CO distributions (Figure 2)
agree within the errors of the actual CH4/CO ratio, the

Table 1. CH4 Emissions Used for 2006 GEOS-Chem Model
Estimates for September Through November 2006, Updated With
TES CH4 Observationsa

Indonesia 2006 CH4 Emissions

CH4 (Tg/month)

Emission
Type September October November

3Month
Total

A priori Total 2.39 4.06 1.67 8.12
A priori Biomass
Burning

1.12 2.77 0.39 4.28

A priori Wetlands 0.67 0.69 0.68 2.04
A priori Other 0.60 0.60 0.60 1.80
Updated Total 2.23 ± 0.09 3.86 ± 0.09 2.24 ± 0.13 8.33 ± 0.18
Updated Biomass
Burning

0.96 ± 0.09 2.57 ± 0.09 0.96 ± 0.13 4.49 ± 0.18

Updated CH4

from CO
0.84 2.58 0.70 4.12

aThe last row indicates the best methane estimate based on the MOPITT
CO profiles.

Figure 3. Fractional (color bar) residuals betweenModel andMOPITT CO profiles averaged between 20°S and 20°N. The x
axis is longitude and the y axis is pressure (hPa). (left column) residuals before the (middle column) profile-based inversion
and (right column) column-based inversion. Indonesia is near 110°E longitude.

Table 2. CO Emissions, Updated With MOPITT V5J CO Profiles
and Columns

Indonesia 2006 CO (Tg) Emissions

Emission Type September October November
3Month
Total

A priori 19.3 45.2 7.5 85.4
Update (CO Profiles) 13.7 42.3 23.4 79.4
Update (CO columns) 12.5 27.9 11.5 51.9
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difference suggests that the model emission ratio could be
biased low by 13% based on the October distributions in
Figure 2. Assuming these errors are not random, the spread
in the CH4 estimate could range from 3.5 to 5 Tg, which
spans the estimate using the TES CH4 data. As discussed
earlier, this range now incorporates the error terms from data,
transport, and knowledge error in nearby non-biomass-burning
emissions. For these reasons we report a value of 4.25 ±
0.75 Tg for these El Nino driven fires (Table 2).
[11] To our knowledge this is the first estimate of methane

emissions from fires using satellite atmospheric composition
measurements. This estimate is surprisingly consistent with
the model-based estimate of 4.28 Tg that is based on burnt
area index, estimates of CO2 emissions from this burnt
area, and in situ observations of CH4/CO2 emission ratios
in tropical biomass burning plumes [Andreae and Merlet,
2001; Van Der Werf et al., 2010].

4. Summary and Implications

[12] Expectations are that wetland emissions should
decrease during an El Niño year due to reduced rainfall and

drying [Hodson et al., 2011; Bloom et al., 2012], and conse-
quently, we might expect tropical and subtropical atmospheric
methane concentrations to decrease between 2005 and 2006.
However, both TES and the NOAA data near or at the remote
Mauna Loa site (Figure 4) show that atmospheric methane
concentrations remained approximately constant between
2005 and 2006, whereas TES data show that free tropospheric
methane increased in the tropics by about 2 ppb. As seen in
Figure 1, the Indonesian region is the only tropical region with
a significant excess of methane, whereas methane concentra-
tions over other tropical and subtropical wetland regions in
Africa and South America showed either no change or slightly
lower concentrations as might be expected during an El Niño
year [Hodson et al., 2011]. Emissions from these human-set
fires, amplified by a moderate El Niño, therefore, compensated
for decreasing emissions elsewhere in the tropics to increase
tropical tropospheric methane concentrations as observed by
TES. We conclude that changes in wetlands and fires must
both be quantified when examining the effects of ENSO
variability and expected drying in a warming climate [Neelin
et al., 2006] on atmospheric methane.
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